Bytes
ArrowsREWIND Our 2024 Journey

How AlmaBetter created an

IMPACT! Arrows
Data Science

Pandas Cheat Sheet (Basics to Advanced Pandas Cheat Sheet)

Last Updated: 18th November, 2024
icon

Arunav Goswami

Data Science Consultant at almaBetter

Explore the essential Pandas cheat sheet for Python, covering DataFrames, data manipulation, cleaning, aggregation, and visualization, tailored for data science

Pandas is an essential data manipulation library in Python, built on top of NumPy, allowing users to work with labeled data in Python.  It’s especially useful for handling structured data, and its DataFrame and Series structures allow easy manipulation and analysis. This cheat sheet covers the basics of Pandas, focusing on DataFrames, data manipulation, and commonly used functions to boost data science workflows in Python.

Pandas Basics Cheat Sheet

Key Components:

  • Series: A one-dimensional labeled array that can hold data of any type.
  • DataFrame: A two-dimensional table with labeled axes (rows and columns).

Pandas Dataframe Cheat Sheet

DataFrames are the primary data structure in Pandas, representing a table-like collection of data.

Creating DataFrames

import pandas as pd

# From dictionary
data = {'A': [123], 'B': [456]}
df = pd.DataFrame(data)

# From list of lists
data = [[14], [25], [36]]
df = pd.DataFrame(data, columns=['A''B'])

Data Inspection

df.head()             # First 5 rows
df.tail()             # Last 5 rows
df.shape              # Dimensions (rows, columns)
df.info()             # Summary of data
df.describe()         # Summary statistics
df.columns            # Column names
df.dtypes             # Data types of columns
df.isnull().sum()     # Count missing values per column

Selecting Data

# Select column
df['column_name']
df.column_name

# Select multiple columns
df[['col1''col2']]

# Select rows by index
df.iloc[0]              # First row
df.iloc[0:5]            # First 5 rows

# Select rows by label
df.loc[0]               # Row with label 0
df.loc[0:5'col1']     # Rows 0-5 for col1

Filtering Data

# Filter by a single condition
filtered_df = df[df['A'] > 2]

# Filter by multiple conditions
filtered_df = df[(df['A'] > 1) & (df['B'] < 6)]

Modifying Data

# Add Column
df['C'] = df['A'] + df['B']


# Drop Column
df.drop('C', axis=1, inplace=True)


# Rename Columns
df.rename(columns={'A''X'}, inplace=True)

Sorting and Ordering

# Sort by column values
df.sort_values(by='col1', ascending=False)

# Sort by index
df.sort_index()

Pandas Cheat Sheet for Data Science in Python

Data Cleaning with Pandas

Data cleaning is critical for preparing data for analysis. Pandas offers many methods to clean data effectively.

Handling Missing Values

# Check for Missing Data:
df.isnull().sum()


# Fill Missing Data

df.fillna(0, inplace=True)
df.fillna(method='ffill'# Forward fill
df.fillna(df.mean()) # Fill with mean of column


# Drop Missing Data
df.dropna(axis=0, how='any')

Removing Duplicates

# Drop duplicate rows
df.drop_duplicates(inplace=True)


# Find duplicates 
df[df.duplicated()]

Data Type Conversion

# Convert column data types
df['Column'] = df['Column'].astype('int')

Replacing Values

# Replace specific values
df['Column'].replace({0'Zero'1'One'}, inplace=True)

Renaming

# Rename columns
df.rename(columns={'old_name''new_name'}, inplace=True)

Aggregation and Grouping

Aggregation functions allow for summarizing and gaining insights into data patterns.

# Group by a column and aggregate
df.groupby('col1').sum()
df.groupby('Col').count()
df.groupby('col1')['col2'].mean()     # Mean of col2 grouped by col1

# Multiple aggregations
df.groupby('col1').agg({'col2''sum''col3''mean'})

Basic Statistics

df['col'].mean()        # Mean
df['col'].median()      # Median
df['col'].mode()        # Mode
df['col'].std()         # Standard deviation
df['col'].var()         # Variance
df['col'].min()         # Minimum
df['col'].max()         # Maximum
df['col'].quantile(0.75# 75th percentile

Pandas Functions Cheat Sheet

Applying Functions

# Apply function to each column
df.apply(lambda x: x*2)

# Apply function to each row
df.apply(lambda row: row.sum(), axis=1)

# Apply function to a single column
df['col'] = df['col'].apply(lambda x: x*2)

Advanced Data Operations

Advanced operations in Pandas enhance the ability to manage and reshape data for complex data science tasks.

Merging and Joining

# Merge two DataFrames on a key
pd.merge(df1, df2, on='key')

# Left, Right, Outer Join
pd.merge(df1, df2, on='key', how='left')
pd.merge(df1, df2, on='key', how='right')
pd.merge(df1, df2, on='key', how='outer')

# Join two DataFrames by index
joined_df = df1.join(df2, lsuffix='_left', rsuffix='_right')

# Concatenate along rows or columns
pd.concat([df1, df2], axis=0# Rows
pd.concat([df1, df2], axis=1# Columns

Pivot Tables

# Pivot table
df.pivot_table(values='col', index='col1', columns='col2', aggfunc='mean')
# Crosstab
pd.crosstab(df['col1'], df['col2']

Reshaping Data

# Melt (Unpivot)
df.melt(id_vars=['A'], value_vars=['B''C'])

# Pivot (Opposite of melt)
df.pivot(index='A', columns='B', values='C')

Date and Time

# Convert to datetime
df['date'] = pd.to_datetime(df['date'])

# Extract date parts
df['year'] = df['date'].dt.year
df['month'] = df['date'].dt.month
df['day'] = df['date'].dt.day

String Operations

# Convert to lowercase
df['col'] = df['col'].str.lower()

# Check if a string contains a pattern
df[df['col'].str.contains('pattern')]

# Replace string patterns
df['col'] = df['col'].str.replace('old''new')

Input/Output Functions

Pandas simplifies data import and export, making it versatile for reading and saving various file formats.

Reading Data

# CSV
df = pd.read_csv('file.csv')
# Excel
df = pd.read_excel('file.xlsx')
# JSON
df = pd.read_json('file.json')

Writing Data

# CSV
df.to_csv('output.csv', index=False)
# Excel
df.to_excel('output.xlsx', index=False)
# JSON
df.to_json('file.json', orient='records')

Data Visualization with Pandas Cheat Sheet

For quick visualization, Pandas provides basic plotting capabilities based on Matplotlib.

Plotting Basics

import matplotlib.pyplot as plt

# Line plot
df.plot(kind='line')
plt.show()

# Bar plot
df.plot(kind='bar')
plt.show()

# Histogram
df['Column'].plot(kind='hist')
plt.show()

Customizing Plots

# Customize plot style and labels
df.plot(kind='line', color='green', linewidth=2, title='Line Plot')
plt.xlabel('X-axis Label')
plt.ylabel('Y-axis Label')
plt.show()

Scatter Plot

# Scatter plot between two columns
df.plot.scatter(x='Column1', y='Column2')
plt.show()

Conclusion

This Python Pandas cheat sheet provides an essential overview of functions, from DataFrame manipulation to data cleaning, aggregation, and visualization. By mastering these core features, users can efficiently manage and analyze data in Python, making it an indispensable tool in data science workflows.

More Cheat Sheets and Top Picks

  • Official Address
  • 4th floor, 133/2, Janardhan Towers, Residency Road, Bengaluru, Karnataka, 560025
  • Communication Address
  • Follow Us
  • facebookinstagramlinkedintwitteryoutubetelegram

© 2025 AlmaBetter